top of page

Prognose von Online Conversions

Tools:

R, H2O

In diesem Projekt haben wir, basierend auf Daten individueller Customer Journeys auf Kundenseite, ein Machine Learning Modell zur Prognose des Conversion-Potenzials entwickelt.

shutterstock_1100643188-2048x1365.jpg

THEMA

Insurance

BRANCHE

Insurance

PROJEKTDAUER

1 Monat

Herausforderung

Die Modellierung von Customer Journey Daten ist eine zentrale Fragestellung im Bereich Web Analytics. Auch für unseren Kunden, ein Online-Versicherungsunternehmen, das bis dato nur mit einfachen Attributionsmodellen gearbeitet hatte, stellten die Frage nach dem Verhalten von Kund:innen entlang der Journey und die Modellierung von Conversions neue Herausforderungen dar, die im Rahmen des Projekts erarbeitet werden sollten.

Ansatz

Auf Basis zehntausender individueller Customer Journeys, die über das kundeneigene Web Tracking System generiert wurden, haben wir ein Machine Learning Modell entwickelt, das anhand der historischen Online-Kontaktpunkte auf verschiedenen Kanälen und Webseiten eine Conversion auf der eigenen Webseite mit hoher Genauigkeit vorhersagen kann. Das Modell nutzt hierzu alle verfügbaren digitalen Touchpoints aus, um eine möglichst genaue Prognose zu erstellen. Hervorzuheben ist insbesondere, dass nicht nur der letzte Kontaktpunkt vor der Conversion, sondern die gesamte Journey der Kund:innen in die Prognose einfließt. Das Modell trainiert sich selbst über „Gradient Boosting“ einer state-of-the-art Methode im Bereich Machine Learning.

Ergebnis

Durch die Modellierung der gesamten dem Kunden zu Verfügung stehenden Customer Journey Daten konnte erstmalig gezeigt werden, dass eine Prognose von Conversions möglich ist und von vielen weiteren Faktoren abseits des letzten Touchpoints abhängt. Das Scoring der Cookies kann dazu verwendet werden, die Online-Gebotsstrategien zu optimieren oder in Echtzeit auf der Webseite gezielte Angebote auszuspielen.

100%

10.000+

99,9%

ZUFRIEDENHEIT

TRAININGSDATEN

VORHERSAGEGENAUIGKEIT

1632298486336-2_edited.jpg

Sabayn Mirakai

Managing Director

+49 160 779 85 83

  • LinkedIn
  • Xing

Brauchen auch Sie eine ähnliche Lösung?

Sie haben Fragen zu dieser Lösung oder zu Ihrem ganz spezifischen Anwendungsfall?

Unsere Experten beraten Sie gerne!

robot-5232974_1280.png
bottom of page